Instruction-based energy estimation methodology for asymmetric manycore processor simulations
نویسندگان
چکیده
Processor power is a complex function of device, packaging, microarchitecture, and application. Typical approaches to power simulation require detailed microarchitecture models to collect the statistical switching activity counts of processor components. In manycore simulations, the detailed core models are the main simulation speed bottleneck. In this paper, we propose an instruction-based energy estimation model for fast and scalable energy simulation. Importantly, in this approach the dynamic energy is modeled as a combination of three contributing factors: physical, microarchitectural, and workload properties. The model easily incorporates variations in physical parameters such as clock frequencies and supply voltages. When compared to commonly used cycle-level microarchitectural simulation approach with SPEC2006 benchmarks, the proposed instruction-based energy model incurred a 2.94% average error rate while achieving an average simulation time speedup of 74X for a 16-core asymmetric x86 ISA processor model with multiple clock domains operating at different frequencies.
منابع مشابه
Energy Introspector: Simulation Infrastructure for Power, Temperature, and Reliability Modeling in Manycore Processors
This paper presents an architectureindependent modeling infrastructure called the Energy Introspector for estimating non-functional aspects of processors such as energy, power, temperature, area, delay, sensor, and reliability. The Energy Introspector supports processor modeling through the integration of various modeling tools. It features structural abstraction of physical and microarchitectu...
متن کاملTradeoffs in the Design Space Exploration of Application-Specific Processors
An application-specific instruction set processor (ASIP) design methodology can exploit special characteristics of applications to meet the performance and time-to-market requirements. In this paper, tradeoffs encountered in the design of application-specific processors targeting embedded applications are discussed. The exploration of the architecture design space is a crucial step to effective...
متن کاملEnergy and Synchronization-Aware Mapping of Real-Time Tasks on Asymmetric Multicore Platforms
Efficient task mapping plays a crucial role in saving energy in asymmetric multiprocessor platforms. This paper considers the problem of energy-aware static mapping of periodic realtime dependent tasks sharing resources on asymmetric multi/many-core embedded systems. The paper extends an existing synchronization-aware bin-packing (BP) variant when the full-chip dynamic voltage and frequency sca...
متن کاملEnergy Efficiency Effects of Vectorization in Data Reuse Transformations for Many-Core Processors—A Case Study
Thread-level and data-level parallel architectures have become the design of choice in many of today’s energy-efficient computing systems. However, these architectures put substantially higher requirements on the memory subsystem than scalar architectures, making memory latency and bandwidth critical in their overall efficiency. Data reuse exploration aims at reducing the pressure on the memory...
متن کاملDevelopment of Energy Models for Design Space Exploration of Embedded Many-Core Systems
This paper introduces a methodology to develop energy models for the design space exploration of embedded many-core systems. The design process of such systems can benefit from sophisticated models. Software and hardware can be specifically optimized based on comprehensive knowledge about application scenario and hardware behavior. The contribution of our work is an automated framework to estim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012